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Molecularimaging via afterglow luminescence minimizes tissue
autofluorescence and increases the signal-to-noise ratio. However,

theinduction of afterglow requires the priorirradiation of light,

whichis attenuated by scattering and absorptionin tissue. Here

we report the development of organic nanoparticles producing
ultrasound-induced afterglow, and their proof-of-concept application

in cancerimmunotheranostics. The ‘sonoafterglow’ nanoparticles
comprise a sonosensitizer acting as an initiator to produce singlet oxygen
and subsequently activate a substrate for the emission of afterglow
luminescence, whichis brighter and detectable at larger tissue depths

(4 cm) than previously reported light-induced afterglow. We formulated
sonoafterglow nanoparticles containing a singlet-oxygen-cleavable
prodrug for the immune-response modifier imiquimod that specifically
turnoninthe presence of the inflammation biomarker peroxynitrite, which
isoverproduced by tumour-associated M1-like macrophages. Systemic
delivery of the nanoparticles allowed for sonoafterglow-guided treatment
of mice bearing subcutaneous breast cancer tumours. The high sensitivity
and depth of molecular sonoafterglow imaging may offer advantages for
thereal-time in vivo monitoring of physiopathological processes.

Opticalimagingallows for the close monitoring of physiopathological
processes atthe molecular level and is thus routinely used to decipher
biology and to diagnose diseases' . To minimize autofluorescence and
to improve the signal-to-background ratio (SBR), afterglow imaging
uses materials (such as semiconducting polymer and rare-earth-doped
inorganic nanomaterials) as the ‘optical battery’ to store photoenergy
in defects, to then slowly release photons after the cessation of light
irradiation®°. With respect to enzyme-catalyzed bioluminescence and
radioisotope-enabled Cerenkovimaging'® ", afterglow imaging has the
advantages of tuneable near-infrared (NIR) emission, renewable and
repeatable luminescence and along lifetime, which make the image

modality useful for a variety of in vivo imaging applications, such as
the ultrasensitive detection of metastatic tumours®, intra-operative
image-guided surgery", the real-time tracking of prodrug activation'
and the early diagnosis of organ injuries’.

In current implementations of afterglow imaging, despite
the elimination of autofluorescence during signal acquisition, the
signal-induction processrequires lightirradiation. Owingto light scat-
tering and re-absorptionintissue, itis challenging to use light-induced
afterglow (photoafterglow) toinduce a signal in deep-seated afterglow
agents”. This issue can potentially be addressed via the development
of afterglow agents that canbe induced with deep-tissue-penetrating
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electromagnetic radiation. In fact, X-ray-induced afterglow has been
observed from inorganic LiGa;O4:Cr@SiO, nanoparticles'. Further-
more, the emission of X-ray-induced afterglow was shifted to the sec-
ondNIR range, as shown for NaYF,:Er@NaYF, nanoparticles'”. However,
X-ray-induced afterglow materials arerare, and itis difficult to design
probes that activate their signals only in the presence of specific bio-
markers, owing to challenges in the precise control of the structure
and surface modifications of the probes.

In contrast to the use of X-rays, non-radiative ultrasound is a safer
deep-tissue-penetrating mechanical energy, which however has not
been exploited for in vivo optical imaging®. Conventionally defined
sonoluminescenceis related to a spontaneous luminescence process
from bubble cavitation after periodic expansion and extraction on
ultrasound irradiation”. However, such sonoluminescence has ashort
wavelength (blue light), low brightness and extremely short lifetime
(microseconds). Differently, ultrasound-triggered luminescenceis an
energy-releasing process from piezoelectricinorganic materials, which
store photoenergyinlattice defects and radiatively releaseit on ultra-
sonic mechanical stress®. Recently, such piezoelectric nanoparticles
were applied for sono-optogenetic stimulation of the brain through
the intact mouse skull”®. However, photocharging is a prerequisite for
the ultrasound-triggered luminescence of piezoelectric nanoparticles,
which precludes repeatable induction of afterglow by ultrasound
applicationindeep tissue.

In this Article, we report organic nanoparticles that emit
ultrasound-induced afterglow, and the application of such sono-
afterglow for biomarker-activatable cancer immunotheranostics.
Sonoafterglow nanoparticles (SNAPs) comprise a sonosensitizer as
the initiator to produce singlet oxygen (*0,) under ultrasound and
subsequently convert asonoafterglow substrate into active dioxetane
substrates, whose luminescence is long-lasting and able to transfer
back to the sonosensitizer. The ultrasound initiation mechanism
ensures the induction of sonoafterglow from deep-seated nanoparti-
cles. Furthermore, molecular engineering of each composition allows
for the development of ‘smart’ sonoafterglow nanoprobes that turn
on their sonoafterglow signal only in the presence of specific disease
biomarkers. By incorporating a macrophage-polarization prodrug
into the nanoparticle, we synthesized a sonoafterglow cancer nanoim-
munotheranostic probe (SCAN). SCAN activatesimmunotherapeutic
action only under ultrasound application, emitting a sonoafterglow
signal that can be coupled back to the pro-inflammatory levels of the
tumour immunomicroenvironment (as characterized by the pres-
ence of Ml macrophages). Thus, SNAP serves as amodular system for
deep-tissue high-contrast biomarkerimaging and cancer theranostics.

Results

Development of the SNAPs

To optimize sonoafterglow, a series of sonosensitizers that generate
0, on ultrasound application were screened for the role as sonoaf-
terglow initiators, including rose bengal octyl ester (RB), haemato-
porphyrin (HMP), verteporfin (VP) and silicon 2,3-naphthalocyanine
bis(trihexylsilyloxide) (NCBS) (Fig. 1a,b and Supplementary Fig. 1).
Moreover, they are fluorescent agents with visible-to-NIR emis-
sion (Supplementary Fig. 2). Polymer or small molecules that
can react with 'O, to produce the self-luminescence dioxetane
intermediates were screened for the role as sonoafterglow sub-
strates, including phenoxyl-adamantylidene (PA), azide-methyl
acrylate-phenoxyl-adamantylidene (AMPA), poly[2-methoxy-
5-(2’-ethylhexyloxy)-1,4-phenylene vinylene] (MEHPPYV),
dicyanomethylene-4H-benzopyran-phenoxyl-adamantylidene (DPAo)
and dicyanomethylene-4H-benzothiopyran-phenoxyl-adamantylidene
(DPAs) (Supplementary Fig. 3 and Table 1). SNAPs were prepared with
different combinations of these sonoafterglow initiators and substrates
through co-nanoprecipitationin the presence of an amphiphilic stabi-
lizer, poly(ethylene glycol)-block-poly (propylene glycol)-block-poly

(ethylene glycol) (PEG-b-PPG-b-PEG). SNAPs had the hydrodynamic
diameters ranged from 50 nm to 120 nm measured by dynamic light
scatteringand spherical morphology detected by transmissionelectron
microscope (TEM) (Fig. 1f and Supplementary Fig. 4).

The sonoafterglow properties of SNAPs were studied and com-
pared for optimized composition. The optimal mass ratio between
sonoafterglow initiators and substrates within SNAP was 1:5, and
ultrasound application conditions were optimized to be 2.0 W cm™
for 30 s (Supplementary Figs. 5-7). NCBS/AMPA SNAP had the high-
est sonoafterglow intensity, which was 3.1t0243.6 times higher than
other tested SNAPs (Fig. 1c,d). Furthermore, the origin of sonoaf-
terglow emission was dependent on the spectral overlap between
substrate and initiator. When the emission of sonoafterglow substrate
overlaid with the absorption of initiator, energy transfer could occur,
leading to the sonoafterglow emission from theinitiator, for example,
NCBS/MEHPPV SNAP. Otherwise, the sonoafterglow emission was
dominated by the substrate, for example, RB/DPAo SNAP. The sono-
afterglow half-lives for SNAPs ranged from 70 s to 180 s (for example,
110 s for NCBS/DPAs SNAP), which was long enough for in vitro and
in vivo imaging (Fig. 1e). Considering the strongest sonoafterglow
intensity in NIR region (peaked at 780 nm), NCBS/DPAs SNAP was
chosen for the following experiments. Sonoafterglow intensities of
NCBS/DPAs SNAP solutions showed no significant difference after
ultrasound application for five cycles (30 s per cycle), suggesting
the repeatability of sonoafterglow (Supplementary Fig. 8a). This
was benefited from the low consumption rate of NCBS (-2.3%) and
DPAs (-4.5%) per ultrasound application (Supplementary Fig. 8b).
Inaddition, sonoafterglow was stably induced in different biological
buffers (Supplementary Fig. 9).

Deep-tissue induction of bright sonoafterglow

To compare sonoafterglow with photoafterglow, the signal of NCBS/
DPAs SNAP was acquired after ultrasound (1.0 MHz) or laser (808 nm)
application for the same time (30 s). The power intensity for ultrasound
was 2.0 W cm™, which was the previously optimized power intensity
and within the safe range to skin (1.0-3.0 W cm™); however, laser was
applied at its maximum permissive exposure (0.33 W cm™) (Fig. 2a).
Under these conditions, sonoafterglow intensity was 2.4 times higher
than photoafterglow, and was equal to that after laser irradiation for
90 s (Fig. 2b). To gain insight into the brighter sonoafterglow over
photoafterglow,'0, generation from NCBS under ultrasound or laser
irradiation was studied.'0, generation under ultrasound application
was 1.6 times higher than that under laser irradiation for the same time
(30s) (Fig. 2c and Supplementary Fig. 10), revealing that more effi-
cient'0, generation was one contributor to stronger sonoafterglow
signals. Under these short-time irradiation conditions (ultrasound
applicationfor30 sorlaserirradiation for 90 s), NCBS/DPAs SNAP had
no detectable cytotoxicity (Fig. 2d). This could be attributed to the
0,-scavenging effect by the afterglow substrates inside nanoparticles.
However, after long-term ultrasound application (5 min), NCBS/DPAs
SNAPinduced 90% of cancer cell death, which was 1.6 times higher than
that under laser irradiation for the same time. To study the cavitation
effect on cell viability, SNAP without NCBS (SNAPc) was incubated with
cancer cells followed by ultrasound application. SNAPc and SNAP at
same concentration caused 19.8 + 3.9% and 84.9 + 4.7% of 4T1 cancer
cell death, respectively, suggesting that cavitation played aminor role
in cell viability (Supplementary Fig. 11). In addition, '0, generation
from SNAP upon ultrasound application was -216 times higher than
other reactive oxygen species, including -OH and O, ", revealed by
electronspinresonance (ESR) spectroscopy (Supplementary Fig.12).
These findings verified that tumour cell killing was mainly attributed
tosonodynamic effect from sonosensitizerin SNAPs. Overall, suchan
application time-dependent ultrasound toxicity enabled safe sonoaf-
terglow imaging (short term, 30 s) and sonodynamic tumour killing
(long term, 5 min).

Nature Biomedical Engineering | Volume 7 | March 2023 | 298-312

299


http://www.nature.com/natbiomedeng

Article

https://doi.org/10.1038/s41551-022-00978-z

a
Ultrasound Sonoafterglow Sonoafterglow initiator a on C O
2 > D)
Ultrasound =Y
cessation NN CH,(CH2)4CHy
Q o Ny /S:\\ N R=0-Si-CHy(CH2)iCH,
Cﬁ" —— N2 CH,(CH2)4CHg
@ S R
o &
SNAP Luminescent SNAP RB VP NCBS
Stabilizer Sonoafterglow substrate ngi
~o
CHy . e N
wtos Ao Moo e
100 65 100
PEG-b-PPG-b-PEG AMPA MEHPPV PA
b Sonoafterglow mechanism
N Oxidation Sonoafterglow Energy transfer Sonoafterglow
y Sonodynamic S R 0-0 R el N
process -7 > Chemiexcitation =0 ry’ -7 T (j’}
P | M Shemeretaten, {3
Initiator Substrate (R = H or OMe) Dioxetane intermediate Luminescent substrate Luminescent initiator
¢ RB HMP VP NCBS
AMPA AMPA AMPA AMPA
T 7 A » T T * * * - - <
MEHPPV MEHPPV MEHPPV MEHPPV
3
B PA PA PA PA
2
®
o
5 WH
DPAo DPAo DPAo DPAo
p—e—tre—o—9 —o—ns p—o—oro—s o
DPAs DPAs DPAs DPAs
500 550 600 650 700

750 800 850 500 550 600 650 700

750 800 850 500 550 600 650 700 750

800 850 500 550 600 650 700 750 800 850

Wavelength (nm)

d 25 8.0
‘ = AMPA
20 M MEHPPV
= 6.0
s DPAO
©7 = DPAs g

4.0

2.0

Sonoafterglow (107 p s™ ecm™2sr™)
Sonoafterglow (10° ps™ cm™2 sr™) o

o

Number (%)

RB

HMP VP NCBS

60

Fig.1|Screening and optimization of SNAPs. a, Schematicillustration for
sonoafterglowimaging and components for SNAPs including sonoafterglow
initiators, substrates and stabilizers. b, Molecular mechanism of sonoafterglow.
Under ultrasound application, initiators produce '0, to convert sonoafterglow
substrate into active dioxetane substrates that slowly decompose and emit
afterglow luminescence. The luminescence can transfer back to sonosensitizer
and re-emit at longer wavelength. ¢,d, Sonoafterglow spectra (c) and intensities
(d) of SNAPs with different compositions ([afterglow substrate] =20 ug ml™).
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Sonoafterglow spectrawere acquired using IVIS bioluminescence mode

with specific emission filters (acquisition time1s per filter) after ultrasound
application at2.0 W cm™for 30 s. Sonoafterglow intensities were measured
using IVIS under same condition yet with open filter (acquisition time1s).

e, Sonoafterglow decay of NCBS/DPAs SNAP ([DPAs] =20 pg ml™). Acquisition
time: 1s.f, Size distribution and representative TEM image of NCBS/DPAs SNAP

([DPAs] =10 pg ml™). For all experiments, n = 3independent samples. Data are
presented asmean +s.d.
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Fig.2|Deep-tissue induction of sonoafterglow. a, Schematicillustration
comparing sonoafterglow and photoafterglow. MPE: maximum permissive
exposure. b, Afterglow intensities of NCBS/DPAs SNAP ([DPAs] = 20 ug ml™)
under ultrasound or laser irradiation for indicated time. Acquisition time: 1s.
¢,'0,generation of NCBS/DPAs SNAP ([DPAs] = 20 pg ml™) under ultrasound
orlaserirradiation over time. d, Viability of 4T1 cancer cells treated with NCBS/
DPAs SNAP ([DPAs] = 20 ug ml™) after ultrasound or laser irradiation over time
(n=3independent samples). e, Schematic illustration comparing sonoafterglow
and photoafterglow of SNAPs in deep tissue. f, Schematic illustration showing
theinduction and detection of afterglow from SNAPs through chicken breast
tissues. g,h, Representative images (g) and SBRs (h) for sonoafterglow,

photoafterglow and fluorescence of NCBS/DPAs SNAP ([DPAs] =100 pg ml™)
induced and detected through chicken breast tissue of different thickness.

i, Schematicillustration showing the induction and detection of afterglow
from SNAPs through a living mouse. j k, Representative images (j) and SBRs

(k) for sonoafterglow, photoafterglow and fluorescence of NCBS/DPAs SNAP
([DPAs] =100 pg ml™) through a living mouse (-1.8 cm tissue depth). Ing and
Jj,acquisition time for sonoafterglow and photoafterglow:1s; acquisition time for
fluorescence: 0.1s. Ultrasound settings: 1.0 MHz, 100 Hz, 50% duty, 2.0 W cm 2,
30 s. Laser settings: 808 nm, 0.33 W cm 2,90 s. For all experiments, n=3
independent samples. Data are presented as mean + s.d. Statistical significance
was calculated via one-way ANOVA followed by Tukey’s post hoc test (b).
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Tostudy how deep sonoafterglow could be induced and detected
in tissue, NCBS/DPAs SNAP solution was covered with chicken breast
tissues, followed by ultrasound applicationor laser irradiation through
the tissues before signal detection (Fig. 2e,f). To rule out the effect of
intensity difference on tissue penetration depth, ultrasound applica-
tion (2.0 W cm™for 30 s) and NIR laser irradiation (0.33 W cm™ for
90 s) were conducted to afford the same level of afterglow intensities.
Owing to the minimized background noise, SBRs for sonoafterglow
and photoafterglow were higher than NIR fluorescence at all tissue
depths (Fig. 2g,h). Particularly, sonoafterglow wasinduced and clearly
detected even at the tissue depth of 4 cm (SBR12.5). By contrast, pho-
toafterglow and NIR fluorescence were hardly detectable above the
tissue depth of 2 cm (SBR11.1) and 1 cm (SBR 5.14), respectively. When
NCBS/DPAs SNAP solution was pre-irradiated by ultrasound or laser
without chicken breast coverage, and signals were detected through
chicken breast, SBRs for sonoafterglow and photoafterglow were
similar at all tissue depths (Supplementary Fig. 13). These data con-
firmed that the better performance of sonoafterglow in the former
penetration experiment was attributed to deeper tissue penetration
of ultrasound relative to laser. This advantage was further observed
through a living mouse (-1.8 cm tissue depth) (Fig. 2i-k), showing
that sonoafterglow SBR was 4.0 and 47.4 times higher than that for
photoafterglow and fluorescence, respectively. These data confirmed
the superiority of sonoafterglow over photoafterglowininduction and
imaging of deep-seated nanoparticles.

Biomarker-activatable sonoafterglow imaging

A pro-inflammatory microenvironment status plays a crucial role
in the onset and progression of tumours, and therefore it can serve
as a prognostic signature for cancer immunotherapy?®*. Despite the
importance of molecular imaging in cancer diagnosis and therapy,
amajority of existing imaging agents have ‘always-on’ signals and
produce non-specific signals on passive accumulation®. To enable
the correlation of the signal with the pro-inflammatory status of the
tumour microenvironment, we developed an activatable molecular
sonoafterglow probe (which we named SNAP-M) based on NCBS/DPAs
SNAP (Fig. 3a,b and Supplementary Fig. 14). Peroxynitrite (ONOO")
was chosen as the biomarker for pro-inflammatory tumour microen-
vironment, which was reported to correlate with positive prognosis
ofimmunotherapy”. ONOO™ is overproduced by tumour-associated
Mi-like macrophages (M1 macrophages) viathe reaction between nitric
oxide (NO, the product of iNOS: inducible nitric oxide synthase) and
superoxide anion (O,~, the product of mitochondrial electron transfer
chain) and extensively distributed in tumour microenvironment”
(Supplementary Fig.15). ONOO™ exerts direct tumour-killing effects
and promotes other immune-activating factors to inhibit tumour
angiogenesis and suppress metastatic niche formation, whichendows
MIl-macrophage with anti-tumour phenotype thatis in sharp contrast
to pro-tumoural M2 macrophages?®. Different from NCBS/DPAs SNAP,
SNAP-M comprised a silenced DPAs caged with ONOO™ responsive
moiety (Pro-DPAs)* (Supplementary Fig. 16). Thus, the sonoafterglow
of SNAP-M could be specifically activated by the highly upregulated
ONOO" in M1-characterized pro-inflammatory tumour microenvi-
ronment. Meanwhile, the ‘always-on’ NCBS fluorescence was used
to track the location of SNAP-M. To study the detection selectivity
of SNAP-M, sonoafterglow was detected after incubation with dif-
ferent reactive oxygen and nitrogen species (RONS) and metal ions
(Fig.3c,d). The sonoafterglow of SNAP-M increased by 140-fold after
incubation with ONOO™ but remained nearly unchanged for other
RONS, including hypochlorite (CIO"), superoxide anion (0, ), hydroxyl
radicals (\OH), hydrogen peroxide (H,0,) and nitric oxide (NO), and
metalions, including calciumion (Ca®*) and ferrous ion (Fe**). Moreo-
ver, the sonoafterglow of SNAP-M had a good linearity with ONOO~
concentration, showing a limit of detection (LOD) down to 0.3 uM
(Supplementary Fig. 17).

The sonoafterglow turn-on specificity of SNAP-M towards M1
macrophages was studied in vitro. M1 macrophages were differ-
entiated from Raw 264.7 cells (MO macrophages) after treatment
with M1-polarizing factors (LPS: lipopolysaccharides and IFN-y:
interferon-y)*°, which were verified by M1-characteristic morphol-
ogy and the upregulated iNOS (Supplementary Fig. 18). The detec-
tion of sonoafterglow was conducted after incubating SNAP-M
with various cells, including M1, M2, MO macrophages, 4T1 cancer
cells or NIH 3T3 fibroblasts, for 12 h (Supplementary Fig. 19). The
fluorescence intensities from NCBS were same for all tested cells,
suggesting the comparable cellular uptake of SNAP-M. However,
the sonoafterglow of SNAP-M was the strongest in M1 macrophages,
showing ~5.0 times brighter sonoafterglow than that in MO and
M2 macrophages (Fig. 3e,f). Furthermore, the sonoafterglow in
M1 macrophages dramatically decreased to the basal level upon
pre-treatment of ONOO™ scavenger, N-acetylcysteine.

To validate the signal correlation of SNAP-M with the level of
intra-tumoural M1 macrophage duringimmunotherapy, SNAP-M was
intravenously injected into 4T1 tumour-bearing mice after treatment
with saline or M1-oriented macrophage-polarizing agent resquimod
(R848) (refs. **?) (Fig. 3g). At 36 h post-injection of SNAP-M, the NIR
fluorescence from NCBS reached maximum for both groups, suggest-
ing the highest accumulation of SNAP-M (Supplementary Fig. 20). At
this timepoint, the tumour sonoafterglow intensity for R848-treated
mice was 3.5 times higher than that for saline-treated mice, with the
SBRas high as 72.2 (Fig. 3h,i). Furthermore, the SBR of sonoafterglow
was 2.5times higher than photoafterglow (irradiated by 808 nmlaser)
for R848-treated mice. Flow cytometry confirmed that Ml macrophage
population in R848-treated mice was 9.5 times higher than that in
saline-treated mice (Fig. 3j). Thereby, these data not only confirmed
that enhanced sonoafterglow for R848 treatment group was corre-
lated with increased tumour M1 macrophage population, but also
revealed the superiority of sonoafterglow over photoafterglow in
invivoimaging.

To study the deep-tissue imaging capability of SNAP-M against
Mi-characterized pro-inflammatory tumour microenvironment, sono-
afterglow imaging was conducted by induction and detection through
chicken breast tissues with increased thickness. At 2 cm thickness,
ONOO -activated sonoafterglow wasinduced and detected witha SBR
of'13.3, which was not possible for photoafterglow and fluorescence
(Fig. 3k,I). These results verified the higher sensitivity of deep-tissue
sonoafterglow of SNAP-M over photoafterglow for the monitoring
of M1-characterized pro-inflammatory tumour microenvironment.

Cancerimmunotheranostics via sonoafterglow

Despite the promise of immunotherapy in cancer treatment, patient
response varies among cancer types and even within cohorts with the
same malignancy, leadingto either treatment failure or overdose-related
toxicity’***. As the response rates and therapeutic outcome have been
revealedto closely associate with the pro-inflammatory tumour micro-
environment®?°, cancer immunotherapeutic agents that can send
real-time feedback information on pro-inflammatory tumour micro-
environmentare highly desired to guide treatment regimens. To achieve
such precision cancer immunotherapy, SCAN was developed to com-
prise not only a silenced sonoafterglow initiator, Pro-MB: a methylene
blue (MB) derivative caged witha ONOO-cleavable moiety, but also an
Ml-polarizing prodrug, Pro-R837: animiquimod (R837) derivative caged
witha'O,-cleavable moiety (Fig.4a,b and Supplementary Figs. 21and 22).
Only in the presence of high level of ONOO" in the pro-inflammatory
tumour microenvironment was the sonoafterglow initiator activated to
generate sonodynamic effect (production of'0,), consequently leading
tothesonoafterglow fromthe substrate AMPA for feedback; additionally,
the generated 'O, resulted in the cleavage of imiquimod from Pro-R837
for in situ activation of immunotherapy. As designed, SCAN intrinsi-
cally showed negligible fluorescence, !0, generation under ultrasound
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Fig.3 | Activatable sonoafterglow imaging of M1 macrophages.

a, Molecular mechanism of SNAP-M for activatable sonoafterglow imaging

of M1-characterized pro-inflammatory tumour microenvironment. ONOO~
overproduced in pro-inflammatory tumour microenvironment activates Pro-
DPAs to DPAs to emit sonoafterglow after ultrasound application. b, Scheme of
R848-induced M1-characterized pro-inflammatory tumour microenvironment
monitored by sonoafterglow imagingin vivo. Sonoafterglow imaging was applied
to the tumours of mice treated with R848 to induce highly pro-inflammatory
tumour condition featured by M1 macrophage and ONOO". ¢, Sonoafterglow
spectra of SNAP-M ([Pro-DPAs] =40 pM) with or without incubation with
ONOO" (80 pM). Ultrasound settings: 2.0 W cm™, 30 s. Acquisition time: 1s

per filter. d, Sonoafterglow fold change of SNAP-M ([Pro-DPAs] = 40 uM) after
incubation with different RONS (80 uM) or metal ions (100 pM). Ultrasound
settings: 2.0 W cm™, 30 s. Acquisition time: 1s. e,f, Microscopic images (e) and
intensities (f) of sonoafterglow in MO, M1 and M2 macrophages after incubation
with SNAP-M ([Pro-DPAs] =20 pg ml™) for 12 h. Ultrasound settings: 2.0 W cm™?,
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30s. Acquisition time: 5s. NAC, N-acetylcysteine. g, Timetable for sonoafterglow
imaging on saline- or R848-treated 4T1 tumour-bearing mice after intravenous
injection of SNAP-M. h,i, Representative images (h) and SBRs (i) for fluorescence,
photoafterglow and sonoafterglow on tumours from saline- or R848-treated
mice at 36 h after intravenous injection of SNAP-M ([Pro-DPAs] = 250 pg ml ™,
200 pl).j, Flow-cytometric plots and quantification of tumour M1 macrophages
(F4/80'iNOS"e") in CD11b* cells at day 8. k1, Representative images (k) and SBRs
(I) for fluorescence, photoafterglow and sonoafterglow on tumours from mice
intra-tumourally injected with SNAP-M ([Pro-DPAs] = 50 pg ml™, 50 pl). For hand
k, sonoafterglow was acquired for 10 s after ultrasound application (2.0 W cm ™)
for 30 s; photoafterglow was acquired for 10 s after laser irradiation (808 nm,
0.33 W cm™?) for 90 s, and fluorescence was captured for 0.1s (Ex =710 nm,

Em =780 nm). For all experiments, n = 3 independent samples or animals. Data
are presented as mean + s.d. Statistical significance was calculated via one-way
ANOVA followed by Tukey’s post hoc test (fand i) or two-tailed Student’s ¢-test (j).
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Fig. 4 |Sonoafterglow cancer immunotheranostics in vitro. a, Scheme of
SCAN for sonoafterglow-guided cancer immunotherapy. SCANis activated

by ONOO™ in tumour microenvironment for sonoafterglow imaging of
Ml-characterized pro-inflammatory environment; in turn, activated SCAN
exerts sono-immunotherapy to kill tumour cells and elicit M1 macrophages,
producing more ONOO™ for SCAN activation. b, Molecular mechanism of SCAN
for sonoafterglow cancer nano-immunotheranostics. Sonoafterglow initiator
isactivated by ONOO™ in tumour microenvironment to generate sonodynamic
effect (production of'0,), causing sonoafterglow from the substrate AMPA
for feedback and liberating imiquimod from Pro-R837 for in situ activation
ofimmunotherapy. ¢,'0, generation of Pro-MB (30 uM) before and after
treatment with ONOO™ (60 puM) upon ultrasound application (2.0 W cm™?)
over time. d, Sonoafterglow spectra of SCAN ([Pro-MB] =30 uM) before and
after treatment with ONOO™ (60 pM). Ultrasound settings: 2.0 W cm™,30ss.
Acquisition time: 1s per filter. e, Viability of 4T1 cancer cells treated with

ONOO™ (60 pM) activated or non-activated SCAN ([Pro-MB] =30 pM) upon
ultrasound application (2.0 W cm™) over time. f, Kinetics of Pro-R837 activation
inSCAN ([Pro-MB] =30 pM) in the presence or absence of ONOO™ (60 uM) upon
ultrasound application (2.0 W cm™) over time. g, Procedures for M1 polarization
and sonoafterglow signal feedback of SCAN in macrophages. SCAN was treated
with ONOO™ (60 puM) and irradiated with ultrasound (2.0 W cm™) to be fully
activated. h, Flow-cytometric plots of M1 macrophages (F4/80"iNOS"e") after
incubation with saline, free imiquimod (R837), non-activated SCAN (ultrasound-
irradiated only) and fully activated SCAN for M1 polarization. [Pro-R837]=10

pg ml™ i,j. Microscopic images (i) and intensities (j) of sonoafterglow from
macrophages (after indicated treatments) incubated with freshintact SCAN
([Pro-MB] =30 pM). Ultrasound settings: 2.0 W cm 2,30 s. Acquisition time: 1s.
For all experiments, n =3 independent samples. Data are presented as mean + s.d.
Statistical significance was calculated via one-way ANOVA followed by Tukey’s
post hoc test (j).

applicationand sonoafterglow, because MB was in caged form (Fig. 4c,d
and Supplementary Fig. 23). After ONOO™addition, SCAN increased its
fluorescence by 95.1-fold, '0, generation by 4.4-fold and sonoafterglow
by nearly 80-fold. However, no significant changes were observed by
other tested RONS and metal ions (Supplementary Fig. 24). The sono-
afterglow intensity of SCAN correlated well with ONOO™ concentration

withan LOD of 0.1 pM, which was two times lower than fluorescence LOD.
Moreover, non-activated SCAN did not cause 4T1cancer cell deathupon
ultrasound application;in contrast, ONOO-activated SCAN led to 78.1%
of 4T1cancer cell death after ultrasound application for 5 min (Fig. 4e).
Thisindicated that the potent sonodynamic tumour killing by SCAN was
specifically activated in the presence of ONOO™.
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The ONOO™ and ultrasound dual-locked activation of immuno-
therapeutic action for SCAN was studied in vitro. In the absence of
ONOO, even after ultrasound application of SCAN, the elution peak
related to free imiquimod (retention time T =10.5 min) was hardly
observed in high-performance liquid chromatography (HPLC). Only
when SCAN was pre-treated with ONOO™ was the imiquimod peak
clearly shown after ultrasound application and enhanced over time,
ultimately achieving a high activation level of Pro-R837 up to 83.5%
(Fig. 4f and Supplementary Fig. 24). The theranostic ability of SCAN
was studied by treating M2 macrophages with fully activated SCAN
(pre-activated with ONOO™ and pre-irradiated with ultrasound), fol-
lowed by addition of intact SCAN for correlation of sonoafterglow with
Mi-oriented macrophage polarization (Fig. 4g). The fully activated
SCAN repolarized M2 macrophages to M1 macrophages to the level
similar to free R837, eliciting 4.4 and 3.1times higher M1 macrophages
population than PBS and non-activated SCAN (only pre-irradiated with
ultrasound), respectively (Fig. 4h). Next, intact SCAN was added into
allgroups for sonoafterglow detection. The sonoafterglow intensity in
fully activated SCAN-treated cellswas 7.6 and 3.8 times higher than PBS
and non-activated SCAN (Fig. 4i,j and Supplementary Fig. 25). Thereby,
these data verified that SCAN had the potential to act as adual-locked
smart theranostic agent that allowed for precise M1-polarizing immu-
notherapy and sonoafterglow readout of therapeutic outcomes.

To demonstrate the precision immunotheranostic capability of
SCANinvivo, atheranostic regimenwas proposed and tested in the sub-
cutaneous 4T1tumour-bearing mice (Fig. 5a,b). SCAN-C (SCAN without
Pro-R837) was set as control. First, SCAN was systemically administered.
Atthe optimal tumour accumulation of SCAN (day 0.5) indicated by NIR
fluorescence from MB (Supplementary Figs. 26-28), sonoafterglow
was detected for evaluation of tumour-intrinsic M1-characterized
pro-inflammatory level, followed by long-term ultrasound application
(5 min) to induce the '0, generation and activation of Pro-R837 from
SCAN for M1 macrophage-polarizing sono-immunotherapy (accord-
ing to the kinetics of '0, generation and Pro-R837 activation in vitro;
Fig. 4¢,f). At day 2, sonoafterglow signal was back down to the base-
line level owing to the consumption of SCAN components, suggest-
ing that multiple doses of SCAN were required. Therefore, a fresh
dose of SCAN was administered, and sonoafterglow was detected and
compared with that of the previous SCAN dose. The difference in the
sonoafterglow intensities of sequential SCAN imaging was defined as
AS and used to correlate with the increased level of M1-characterized
pro-inflammatory status of tumour after each treatment. These steps
wererepeated to formatheranostic cycle, allowing for close monitor-
ing of theimmunotherapeutic outcome of SCAN. Compared with that
after the first dose (day 0), sonoafterglow intensity showed a 4.82-fold
increase after the second dose (day 2, AS=3.0 x10°ps™* cm™sr7,
P <0.001), which further showed a 1.74-fold increase after the third
dose (day 4, AS=2.8 x10° ps™* cm2sr, P<0.001) (Fig. 5c-e and Sup-
plementary Fig. 29). These suggested the improvement of tumour
pro-inflammatory condition by three doses of SCAN, which might
be associated with the enhanced M1 macrophage population. How-
ever, AS had no significant statistical difference after the fourth dose
(AS=2.8x10*ps?*cm?sr, P>0.05), suggesting that SCAN might no
longer improve the pro-inflammatory tumour microenvironment;

therefore, suchatheranostic regimenwas discontinued. Consequently,
SCAN + ultrasound therapy induced 1.8 and 3.3 times higher sonoaf-
terglow intensities relative to SCAN-C + ultrasound therapy and SCAN
groups at day 8, which suggested a higher level of M1-oriented mac-
rophage polarization by combinational sonodynamicimmunotherapy
(SCAN + ultrasound).

To validate that sonoafterglow intensity was correlated with
intra-tumoural M1 macrophages, tumour immune microenvironment
was analyzed after theranostic regimen discontinued at day 8. Without
ultrasound application, SCAN did not elicit M1 macrophages just as
saline, because Pro-R837 wasinactive. Ultrasound application of SCAN
(for 5 min) elicited 6.4 times more M1 macrophages than saline (Fig. 5f
and Supplementary Fig. 30). Ultrasound application of SCAN-C (for
5min)alsoincreased Ml macrophage populationevenwithout Pro-R837,
because sonodynamic therapy alone induced tumour immunogenic
cell death, as verified by the significant cytosol translocation of high
mobility group box1(HMGB-1) and cell surface exposure of calreticulin
(Supplementary Fig. 31). Superior to SCAN-C, SCAN elicited 2.8 times
more of M1 macrophages under same ultrasound application, which
was attributed to the synergistic sono-immunotherapeutic effects.
Importantly, the trend of increase in M1 macrophage populations
coincided with sonoafterglow signals in each group. SCAN-mediated
sono-immunotherapy increased tumour-infiltrating mature den-
dritic cells (DCs) and cytotoxic T cells (CTLs) by 6.5- and 4.4-fold and
decreased immunosuppressive regulatory T cells (T, cells) by 1.9-fold
compared with saline (Fig. 5g-i and Supplementary Figs. 32-34); it
also substantially increased the level of intra-tumoural tumouricidal
cytokines, including interleukin-12 (IL-12) and IFN-y, and decreased
the level of immunosuppressive cytokines, including tumour growth
factor-f (TGF-B) and IL-10 (Supplementary Fig. 35).

The effect of SCAN-mediated sono-immunotherapy on tumour
progression was further studied. SCAN itself did not inhibit tumour
growth; however, upon long-term ultrasound application, SCAN
achieved tumour eradication, prevented tumour recurrence and
improved the overall survival of mice within 3 weeks (Fig. 5j,k). By
contrast, SCAN-C-mediated mono-sonodynamic therapy failed to
eliminate tumour, and the accelerated tumour growth was observed
after 2 weeks. Furthermore, metastatic nodule was not found in
lungs of mice treated with SCAN-mediated sono-immunotherapy
(Fig. 5I,m), which was not achieved by other groups. To test whether
SCAN could induce durable immune responses, mice that survived
SCAN + ultrasound therapy were rechallenged with subcutaneously
injected 4T1 cancer cells (Fig. 5n,0). Mice that received the previous
SCAN + ultrasound therapy showed no tumour growth and improved
overall survival compared with the untreated mice. The efficient inhi-
bition of SCAN + ultrasound-treated mice on rechallenged tumour
couldbeascribed to the anti-tumourimmunological memory of mem-
ory T cells”, which derived from effector T cells that encountered
tumour-associated antigens triggered by SCAN-mediated sonody-
namicimmunotherapy. This was validated by the fact that the popula-
tion of central memory CTLs (CD8*CD44"s"CD62L"e") in spleens from
SCAN + ultrasound therapy-treated mice were 2.5 times higher than
that from untreated mice (Supplementary Fig. 36). These results con-
firmed that SCAN-mediated sono-immunotherapy induced potent

Fig. 5| Invivo sonoafterglow cancer theranostics. a, Theranostic regimen

of SCAN-mediated sonoafterglow cancer theranostics. b, Timetable of
sonoafterglow-guided cancer sono-immunotherapy on 4T1tumour-bearing
mice. ¢,d, Representative images (c) and intensities (d) of sonoafterglow on
tumours before and at 0.5 h after SCAN-C or SCAN ([AMPA] = 250 pg ml™, 200 pl)
administration (n =3 mice). Sonoafterglow images were acquired for 10 s after
ultrasound application (2.0 W cm™) for 30 s. e, AS and statistic difference of
sonoafterglow between the sequential doses (n = 3 mice). f-i, Flow-cytometric
quantification of intra-tumoural M1 macrophage (CD11b*F4/80*iNOS"e") (f), DCs
(CD11c"CD80"CD86") (g), CTLs (CD3"CD8") (h) and Tg,, cells (CD4 Foxp3°) (i) at

day 8 afterindicated treatments (n = 3 mice). j, k, Tumour growth curves

(j) and survival curves (k) of mice after indicated treatments (n = 6 mice).

1,m, Quantification of pulmonary metastatic nodules (I) and representative
H&E-stained lung section images (m) of mice at day 14 after indicated treatments.
n,0, Tumour growth curves (n) and survival curves (0) of SCAN + ultrasound
therapy-treated mice after subcutaneously re-inoculation of 4T1 cancer cells
(n=6mice). Dataare presented as mean * s.d. Statistical significance was
calculated via two-tailed Student’s ¢-test or one-way ANOVA followed by Tukey’s
posthoctest (e-1and n-o0).
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and long-lastingimmunological memory against tumour progression
andrecurrence.

To study the biodistribution of SCAN, tumour and main organs
were collected from4T1tumour-bearing mice at 12 h after intravenous
injection, and their SCAN contents were determined on the basis of
MB fluorescence. The fluorescence intensities of tumours were over

1.5 times higher than those of other organs (Supplementary Fig. 37),
suggesting SCAN activation in tumour. For measurement, all tissues
were homogenized and incubated with ONOO™ to activate Pro-MB. The
percentage injected dose (ID%) of SCAN in tumour was calculated to
be3.9 £ 0.7%, which was lower than thatinliver (4.9 + 0.7%) yet higher
than thatin spleen (3.2 £ 0.8%) and lung (2.1 + 0.4%) (Supplementary
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Fig.37). However, Pro-R837 was barely activated in those main organs
(Supplementary Fig. 38), which was benefited from dual-lock design of
SCAN. Inaddition, all the components of SCAN are biologically benign
organic molecules that could be cleared by the liver or kidney**.,
This was supported by the data showing no weight loss or abnormal
serological and histological indicators of mice after treatment (Sup-
plementary Fig. 39).

Discussion

To circumvent the limited tissue depth of signalinduction needed for
photo-induced afterglow, we invented ultrasound-induced afterglow
nanoparticles (SNAPs) with tuneable emissions from the visible to the
NIR range (780 nm) and a long half-life (up to 180 s) (Fig. 1). Mecha-
nistically, sonoafterglow resembled photoafterglow, both of which
were initiated by an'O,-generating sensitizer to generate along-lasting
luminescentintermediate. However, the sonoafterglow of NCBS/DPAs
SNAP was 2.4 times brighter than its photoafterglow (application for
30s), because the sonodynamic process had higher efficacy of 'O,
production than the photodynamic process. The more'O,generation
under ultrasound application might be caused by the unique sono-
physicochemical processes (that is, the sonoluminescence, pyrolytic
reactions and acoustic cavitation effects) that facilitate energy trans-
fer from the sensitizer to surrounding oxygen molecules*>*}, which
were not presentunder lightirradiation. Note that sonolysis, aprocess
of ultrasound-induced -OH production, was negligible in this study
possibly owing to the low pulse-repetition frequency (100 Hz) and
sonosensitizer types***’. Inaddition to'0, generation triggered by the
initiator, sonoafterglow was dependent on the chemiluminescence
quantum yield of the substrate, the energy transfer to the initiator
and the fluorescence quantum yield of the initiator. These factors
were varied in different SNAPs; thus, the 'O, generation efficiencies
(Fig. 2c and Supplementary Fig. 1) were not fully consistent with the
sonoafterglow signals (Figs.1d). More importantly, ultrasound enabled
signal induction for NCBS/DPAs SNAP seated deeply in tissue of 4 cm
thickness (Fig. 2), which was twice as deep as its photoafterglow. As a
result of high brightness and deep-tissue imaging, subcutaneously
implanted NCBS/DPAs SNAP showed nearly ten-fold higher in vivo
afterglow signal (2.3 x10° (p s cm2sr™)/(ug mi™)) than the reported
subcutaneously implanted X-ray-induced afterglow nanoparticles
based on the same mass dosage (2.5 x 10* (p s cm ™2 sr™%)/(ug ml™) for
LiGa;O4:Cr NPs). Moreover, NCBS/AMPA SNAP was brighter than all
existing organic photoafterglow nanoparticles and at least 190 times
higher thaninorganic photoafterglow nanoparticles (Supplementary
Table 2). Thus, SNAPs setarecordinboth tissue depth and brightness
for afterglow imaging.

The modular composition of SNAPs allowed their develop-
ment into activatable probes that turned on sonoafterglow only in
the presence of cancer biomarkers. This may not be easily feasible
for X-ray-induced afterglow in inorganic nanoparticles®. As the
'0,-generating initiator and the sonoafterglow substrate are two essen-
tial components for sonoafterglow emission, either the initiator or the
substrate could be molecularly silenced and designed to be activated
by targeted biomarkers. To detect ONOO", a biomarker produced
mainly by M1 macrophages that characterizes a pro-inflammatory
tumour microenvironment, SNAP-M and SCAN were designed to,
respectively, have a silenced sonoafterglow substrate (Pro-DPAs) or
initiator (Pro-MB), both of which functioned to specifically turn ontheir
sonoafterglowinthe presence of ONOO™. Such abiomarker-activated
sonoafterglow in SNAPs eliminated the non-specific signal from pas-
sively accumulated probes, permitting the direct correlation of sonoaf-
terglow with the level of intra-tumoural M1 macrophages and thus the
precise monitoring of pro-inflammatory tumour microenvironment
during cancer immunotherapy. Owing to deep-tissue imaging and
minimal background noise, the activatable sonoafterglow nanoprobe
(SNAP-M) afforded an SBR of 72.2 for in vivo imaging of ONOO™ in the

tumour of living mice, which was 2.5 times higher than its photoafter-
glow (28.9) and even substantially higher than biomarker-activatable
photoacoustic probesand second NIR fluorescent probes used in vivo
(SBR <20) (Supplementary Table 3). We validated SNAP-M for the
deep-tissue (at least 2 cm) evaluation of M1 macrophages during
immunotherapy. It had an accuracy level similar to that of invasive
flow-cytometry analysis of tumour tissues (Fig. 3). We also tested
SCAN in mice with deep-seated peritoneal 4T1 tumours, wherein the
sonoafterglow clearly identified the tumour nodules. Its SBR was 6.0
times higher than fluorescence (Supplementary Fig. 40). Thus, SNAPs
represent a new class of smart probes for the non-invasive screening
of immunotherapeutic agents in living animals.

Taking advantage of the remote ultrasound-charging process,
we further used SNAP as a cancer immunotheranostic agent (SCAN)
by doping them with a silenced immune prodrug (Pro-R837). SCAN
required both ultrasound and ONOO" in the pro-inflammatory tumour
microenvironment to activate itsimmunotheranostic function (Fig. 4).
This dual-lock design is distinct from that of existing nanoimmu-
notheranostic agents with ‘always-on’ signals and pharmaceutical
effects*®* that are non-specifically released in normal tissues and
thus can cause side effects. In addition to the advantage of remotely
controlled immunotherapeutic activation specifically in the tumour,
SCANemitted ONOO-correlated sonoafterglow toreport the levels of
M1 macrophagesinthe pro-inflammatory tumour microenvironment
inreal time, revealing that exact four-dose treatments were sufficient
for the full polarization of the intra-tumoural macrophages (Fig. 5).
Notably, the total dose of R837 administered to mice was at least three
times lower than other reported Toll-like-receptor-agonist-loaded nan-
oparticles for the M1-oriented macrophage polarizationin tumours™-",
With such a sonoafterglow-guided immunotherapeutic regimen, SCAN
precisely elicited effective anti-tumour immunity at the right dosage,
leading to complete tumour suppression and metastasis inhibition.
Thus, SCAN can be used to guide cancer immunotherapy and for the
remote control ofimmunotherapeutic action.

In summary, we have reported a library of ultrasound-induced
afterglow nanoparticles (SNAPs) for deep-tissue-inducible and
background-free optical imaging in living animals. By virtue of the
modular sonoafterglow mechanism, SNAPs can be developed into
activatable theranostic nanoprobes for the accurate detection of subtle
molecular changes in diseased microenvironments and to longitudi-
nally monitor therapeutic outcomes to guide anintervention. Inaddi-
tiontoits potential forin vivo drug screening and precision medicine,
the tissue depth of sonoafterglow imaging may provide opportunities
for the real-time non-invasive detection of physiopathological pro-
cesses at sensitivity levels and tissue depths not achievable by other
optical modalities.

Methods

Synthesis of Pro-R837

To synthesize Linker 1, trifluoroacetic acid (415 pl, 5.43 mmol)
was added dropwise to the mixture of mercaptoacetic acid (10 g,
108.6 mmol) and dry acetone (4.02 ml, 54.3 mmol) over 10 min. Then,
thereactionwasstirred for 6 h until the mixture had alarge amount of
white precipitate. The white solid was washed by diethyl ether (30 ml)
three timesto give pure product Linker1(23.4 g, 96%).'HNMR (CDCl,,
400 MHz):53.53 (s, 4H),1.63 (s, 6H). *°CNMR (100 MHz, CDCl,): §177.2,
56.5,33.3,29.9. HRMS (ESI) m/z:[M - H] calc. for C,H,,0,S,223.0099;
found 223.0098. To synthesize Linker 2, the mixture of NaBH, (5.0 g,
132.3 mmol) and Linker1(5.0 g,22.2 mmol) were added todry tetrahy-
drofuran (THF,100 ml) at 0 °C. Subsequently, iodine (20 g, 78.8 mmol)
in dry THF (100 ml) was added dropwise by a funnel for 0.5h at 0 °C.
Then, the mixture was heated to reflux for 20 h and cooled to room
temperature. Next, CH;OH (50 ml) was slowly added until the reac-
tion became clear. The mixture was concentrated under vacuum and
purified by silica gel column chromatography using CH,Cl,/ethyl
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acetate (1/1, v/v) as eluent to give the colourless oil (2.48 g, 57%).'H
NMR (CDCl;,400 MHz):53.80 (t,/= 6.2 Hz,4H),2.89 (t,/ = 6.0 Hz, 4H),
1.64 (s, 6H). *C NMR (100 MHz, CDCl,): § 61.4, 56.0, 33.7, 31.3. HRMS
(ESI) m/z: [M +H] * calc. for C;H,0,S,197.0670; found 197.0684. To
synthesize Pro-R837, triphosgene (712.2 mg, 2.4 mmol) indry THF (3 mI)
was dropwise added to the mixture of R837 (192.2 mg, 0.8 mmol) and
4-dimethylaminopyridine (DMAP) (293.2 mg, 2.4 mmol) in 10 ml of
THF at 0 °C under N, atmosphere. Then, triethylamine (Et;N) (669 pl,
4.8 mmol) wasadded into the reaction, and the mixture wasstirred for
2 h. The residue was afforded after solvent was removed by vacuum
and the excessive triphosgene was blown away via N,. Subsequently,
Linker 2 (470.5 mg, 2.4 mmol) and Et;N (669 pl, 4.8 mmol) in dry THF
(10 ml) were added quickly into the residue at O °C. Next, the mixture
was stirred for 36 h at room temperature, which was further puri-
fied by HPLC using CH;0H/H,0 as eluent to give white solid Pro-R837
(36.2mg, 9.8%)."HNMR (CDCl;,400 MHz): §8.32 (s, 1H), 8.14-8.18 (m,
2H),7.87 (t,/=7.2Hz,1H),7.79 (t,/=7.2 Hz,1H), 4.53 (t,/=13.5 Hz, 2H),
4.47(d,/=4.8 Hz,2H),3.93 (m,2H),3.06 (t,/=7.2 Hz,1H), 2.93 (m, 2H),
2.31(m,1H),1.61(s, 6H),1.06 (d,/= 4.8 Hz, 6H). MS (ES+): m/z calc. for
C»,H3;N,0,5,463.18; found: 462.96 [M + H]".

Synthesis of Pro-MB

Toluene (40 ml), sodiumbicarbonate (294 mg, 3.5 mmol) and sodium
dithionate (522.3 mg, 3 mmol) were sequentially added to the solution
of MB (373.9 mg, 1 mmol) in water (10 ml), which was stirring at 50 °C
for 30 min. When the mixture turned pale yellow, the toluene phase
containing leuco-MB was separated and dried by anhydrous Na,SO, and
transferred to solvent of Vilsmeier-Haack reagent in dry THF (10 ml).
The residue was washed by saturated NaCl solution (50 ml) and ethyl
acetate (40 ml) three times. The organic layer was dried by anhydrous
Na,SO, and concentrated under vacuum. The white solid Pro-MB (42%
yield) was afforded by silica gel column chromatography using CH,Cl,/
ethylacetate (1/1, v/v) aseluent.'HNMR (CDCl,;, 400 MHz): 5 8.55 (s, 1H),
7.56 (dd,/,= 6.8 Hz,1H), 6.64-6.91(m, 4H), 6.59 (dd, /,= 3.2 Hz,1H), 2.94
(d,J=4.8 Hz,12H).”CNMR (100 MHz, CDCl,): §161.2,149.4,149.3,131.8,
130.3,127.3,125.7,125.2,122.4,111.1,111.0,110.7,110.3, 40.7. HRMS (ESI)
m/z:[M+H] + calc. for C;;H,,N,0S 314.1327; found 314.1323. Vilsmeier—
Haack reagent was prepared as follows: thionyl chloride (SOCI,, 183 pl,
2.5 mmol) dissolvedin 5 ml dichloromethane was added dropwise toa
solution of dry dimethylformamide (DMF) (100 pl) in DCM (10 ml) at
roomtemperature under N,atmosphere. Then, the mixture was stirred
at 60 °Cfor15 minand evaporated onarotary evaporator to afford the
Vilsmeier-Haack reagent.

Synthesis of AMPA

Compound 2-azidoethan-1-amine®® (64.5 mg, 0.75 mmol),
N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) (185 mg,
0.75 mmol) and compound 2-azidoethan-1-amine (MPA) (102.1 mg,
0.3 mmol) were added in THF (20 ml) under N, atmosphere. The reac-
tionwas stirred and monitored by HPLC. After completion, the reaction
mixture was concentrated by evaporation, and crude product was
purified by HPLC using CH,OH/H,0 as eluent to afford AMPA (113.8 mg,
93%) as a white solid. '"H NMR (CDCl;, 400 MHz): 5 7.96 (d, /=12 Hz,
1H), 7.40 (d, /= 8.4 Hz, 1H), 6.85 (s, 2H), 6.59 (d, /= 16.4 Hz, 1H), 6.01
(t,/=5.2Hz,1H),3.54-3.61(m, 4H), 3.31 (s, 3H), 3.23 (s, 1H), 2.7 (s, 1H),
2.75-1.92(m,12H).BCNMR (100 MHz, CDCl,): §167.9,155.9,142.9,138.6,
137.7,133.4,128.7,121.6,121.1,120.1,117.2,58.1, 51.1,39.3,39.2,37.2,32.5,
30.5, 28.4. HRMS (ESI) m/z: [M + H]" calc. for C,;H,,N,0; 409.2240;
found 409.2234.

Preparation of SNAPs and SNAP-M

Sonoafterglow componentsincluding RB, PA*?, DPA,(X=0andS) and
Pro-DPAs were synthesized according to the literature”. MEHPPV, VP,
NCBS and MB were purchased from Sigma-Aldrich. HMP was obtained
from MedChemExpress. Sonoafterglow initiators (including RB, HMP,

VP and NCBS) and substrates (including AMPA, PA, MEHPPV, DPAo
and DPAs) were, respectively, dissolved in THF (or other appropriate
solvents, for example, CH,OH) to obtain the stock solution (1 mg ml™).
PEG-b-PPG-b-PEG (Sigma-Aldrich) was dissolved in THF to obtain the
stock solution (20 mg mI™). The initiator (4 pl), substrate (20 pl) and
PEG-b-PPG-b-PEG (20 pl) were mixed ina10 ml glass bottle under vor-
tex, followed by rotary evaporation to remove THF and afford a thin
film on inner wall. The obtained film was hydrated in 1 ml of distilled
de-ionized water or PBS under vigorous vortex to obtain SNAP solu-
tion. The solution was filtrated through 0.22 pm sterilizing-grade
membranes and concentrated by ultracentrifugation. The solution
was freeze-dried to obtain SNAP powder. SNAP powder was dissolved
in THF, and the concentration of each component was determined
using UV-vis spectrometer. The encapsulation efficiency (EE%) was
calculated by encapsulated drug divided by the total drug added.
For instance, the EE% was, respectively, calculated to be 96.1 +2.6%
and 96.4 + 2.4% for NCBS and DPAs in SNAP. SNAP-M was prepared
accordingly using Pro-DPAs (20 pl, 1 mg mlI™), NCBS (4 pl, 1mg ml™)
and PEG-b-PPG-b-PEG (20 pl, 20 mg ml™).

Preparation of SCAN

Sonoafterglow initiators (Pro-MB), substrates (including AMPA, PA,
MEHPPV, DPAo, DPAs) and Pro-R837 were, respectively, dissolved in
THF to obtain stock solutions. Pro-MB (4 pul, 1 mg mi™), AMPA (20 pl,
1mg ml™), Pro-R837 (8 pl, 1 mg ml™) and PEG-b-PPG-b-PEG (20 pl,
20 mg ml™) were mixed in 10 mlglass bottle using vortex. THF removal,
hydration, filtration and ultracentrifugation were conducted as stated.
The solution was freeze-dried to obtain SCAN powder. SNAP powder
was dissolved in THF and the concentration of each component was
determined using UV-vis spectrometer or HPLC (methanol:water at
70-95% gradient, 0.1% trifluoroacetic acid). The EE% was calculated
as previously stated and to be 97.2 +1.9% for Pro-MB, 98.0 + 2.6% for
AMPA and 97.0 +1.4% for Pro-R837in SCAN.

Cell culture and animal models

NIH3T3 murineembryonicfibroblast cells (CRL-1658),4T1murine breast
cancer cells (CRL-2539) and Raw 264.7 murine macrophages (TIB-71)
were purchased from American Type Culture Collection. Balb/c mice
and nude mice were purchased fromInVivos. Cells were maintainedin
Dulbecco’s modified Eagle medium (DMEM) or Roswell Park Memorial
Institute Medium (RPMI1640) containing 10% foetal bovine serum in
a humidified environment containing 5% CO, and 95% air at 37 °C. All
animal experiments were carried outinaccordance with Guidelines for
Care and Use of Laboratory Animals of the NTU Institutional Animal
Care and Use Committee (IACUC) and approved by the IACUC for Ani-
mal Experiment, Singapore. Mice were group-housedin ventilated clear
plastic cages under appropriate ambient temperature (-22 °C), humid-
ity (50%) and standard 12 h:12 hlight:dark conditions. To establish4T1
breast cancer model, 2 x 10°4T1 cancer cells suspended in 0.2 mIDMEM
were subcutaneously injected to the right flank of Balb/c mice (female,
5-6 weeks). Tumour size was calculated as V= ab%/2, where arepresents
tumour lengthand brepresents tumour width. Treatments were initi-
ated when tumour size reached 100 mm?unless otherwise stated. Mice
werekilled when tumour length exceeded 1.5 cmin diameter. Mice were
weighed every other day during treatment.

Instrument settings

The absorbance and fluorescence spectra of sonoafterglow initiators
andsubstrates dissolved in appropriate organic solvent were recorded
using UV spectrometer and fluorometer (Horiba), respectively. The
absorbance and emission intensity were normalized. 'H NMR spectra
were obtained using AVIII 400 MHz NMR (Bruker) and analyzed by
Mestre Nova LITE v5.2.5-4119 software (Mestrelab Research). The
hydrodynamic size of nanoparticle was measured using Nano-ZS Par-
ticle Sizer (Malvern). The morphology of nanoparticle was studied
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usingJEM 1400 TEM (JEOL). NIR fluorescence images of nanoparticle
solution in thin-wall tube were acquired by IVIS Spectrum CT In Vivo
Imaging System (IVIS, PerkinElmer) under fluorescence mode. Sono-
afterglow was induced by ultrasound generated from Intelect Mobile
Ultrasound device (1.0 MHz, 0-2.5 W cm2,50% duty cycle, 100 Hz, from
Chattanooga). Photoafterglow was induced by 808 nm high-power
NIRlaser (operating mode: continuous wave, output power after fibre:
2.5 W, from CNI) or 680 nm high-power laser (operating mode: continu-
ous wave, output power after fibre: 0.5 W, from CNI). HPLC analysis
and purification were performed on an Agilent 1260 system using
CH,;0H/H,0 as the eluent. Sonoafterglow (or photoafterglow) was
detected using IVIS under bioluminescence mode with openfilter (for
optical intensity determination) or with specific emission filters (for
spectrum recording) after cessation of ultrasound (or laser) applica-
tion (within5s).

Characterization

Both fluorescence and afterglow images were quantified by region
of interest analysis using Living Imaging 4.3 Software. To study the
sonoafterglow half-life, SNAPs were ultrasoundirradiated (2.0 W cm ™)
for30 s, followed by detection using IVIS under IVIS bioluminescence
mode with open filter at continuous timepoints. The sonoafterglow
lifetime of nanoparticle was obtained by plotting sonoafterglow inten-
sity as a function of time. '0, generation upon ultrasound or laser
irradiation was measured by fluorescence enhancement of singlet
oxygen sensor green (SOSG, Thermo Fisher Scientific) recorded by
fluorometer according to manufacturers’instructions. To quantify the
reactive oxygen species generation, 100 pL of NCBS SNAP solutions
(0.1ml,20 pg ml™, in1x PBS) were mixed with 10 pl of 'O, trapping agent
2,2,6,6-tetramethylpiperidine (TEMP, Dojindo Molecular Technolo-
gies) or -OH and O, trapping agent 5,5-dimethyl-1-pyrroline N-oxide
(DMPO, Dojindo Molecular Technologies), followed by ultrasound
application (1.0 MHz, 2.0 W cm ™, 50% duty cycle) for 30 s. Immediately
after treatment, ESR spectra of the samples were recorded using ESR
spectroscopy. The generation of '0, was quantified by measuring
the amounts of free electrons and normalized to the mass of sam-
ples. To study whether sonoafterglow can be repeatedly induced,
NCBS/DPAs SNAP solution (in PBS, pH 7.4, 0.01 M) was irradiated by
ultrasound application for five cycles and sonoafterglow signals were
detected after each cycle. Accordingly, sonoafterglow signals were also
detected from NCBS/DPAs SNAP in other biological buffers including
Tris (0.01 M), HEPES (0.01 M) and DMEM culture medium.

Invitro tissue penetration assays

NCBS/DPAs SNAP ([DPAs] =100 pg ml™) was placed under chicken
breast tissue with different thickness. NIR fluorescence was captured
through chicken breast (excitation wavelength 710 nm, detection
wavelength 780 nm, acquisition time 0.1 s). Sonoafterglow and pho-
toafterglow were, respectively, induced through chicken breast by
ultrasound application (2.0 W cm™) for 30 s and laser irradiation
(808 nm, 0.33 W cm™) for 90 s and detected through chicken breast
under IVIS bioluminescence mode with openfilter (acquisition time1s)
after cessation of irradiation. For further comparison, sonoafterglow
and photoafterglow wereinduced without chicken breast yet detected
through chicken breast with different thickness. NCBS/DPAs SNAP
solutionwas also placed under aliving mouse (tissue depth 1.8 cm) for
signalinduction and detection under the above settings.

Cell viability assay

To compare the cell viability during sonoafterglow imaging, MO
macrophages were seeded in 96-well plates at a density of 5 x 103
cells per well. After 24 h incubation, the medium was replaced
by fresh medium containing NCBS/DPAs SNAP ([DPAs] =4, 20
or 100 pg m1™) for further incubation. After 12 h, the medium was
refreshed, and cells were ultrasound-irradiated (2.0 W cm™) or

photo-irradiated (808 nm, 0.33 W cm™) for 30 s and incubated for
further 24 h.3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium (MTS) reagent was then added into
medium in 1-to-10 volume ratios for cell incubation. After incubation
for 3 h, the absorbance at 490 nm for each well was measured using
microplate reader (SpectraMax). To study the cell viability under differ-
entultrasound applicationtime, 4T1cancer cells were seeded in 96-well
plates at a density of 5 x 10° cells per well. After 24 h incubation, the
medium was replaced by fresh medium containing NCBS/DPAs SNAP
([DPAs] =20 pg ml™) for further incubation. After 12 h, the medium
was refreshed, and cells were ultrasound-irradiated (2.0 W cm™) or
photo-irradiated (808 nm, 0.33 W cm™) over time (up to 5 min) and
incubated for further 24 h. MTS agent was applied for cell viability
determination as described. Accordingly, 4T1cancer cells (5 x 10° cells
per well) were incubated with SCAN ([Pro-MB] =30 pM) pre-treated
with or without ONOO". After 12 h, the medium was refreshed and cells
were ultrasound-irradiated over time (up to 5 min) and cell viability was
determined using MTS agent as stated. To study whether the cell viabil-
ity was contributed by cavitation effect of ultrasound application, 4T1
cancer cells in 96-well plates (5 x 10 cells per well) were incubated with
SNAPc (SNAP without NCBS). After 12 h incubation, the medium was
refreshed, and cells were ultrasound-irradiated (2.0 W cm™) for 5 min.
MTS agent was applied for cell viability determination as described.

Invitro macrophage polarization

MO macrophages (Raw 264.7) were seeded on six-well plate (5 x 10°
cells per well). After incubation for 12 h, cells were incubated with
lipopolysaccharides (100 ng ml™, Sigma-Aldrich) and IFN-y (50 ng ml™,
BioLegend) for M1 macrophage polarization, orIL-4 (10 ng ml™, BioLe-
gend) for M2 macrophage polarization®. After incubation for 2 days,
macrophages were blocked with antibodies against CD16/32 (93,1:50,
BioLegend), then stained with live/dead staining kit (L23105, Thermo
Fisher Scientific), antibody against F4/80 (BMS, 1:20, BioLegend)
and antibody against iNOS (W16030C, 1:160, BioLegend), followed
by analysis using LSR Fortessa flow cytometer (BD Biosciences). Data
were analyzed using FlowJo v10 software.

ONOO responsiveness of SNAP-M and SCAN

SNAP-M ([Pro-DPAs] =40 pM) or SCAN ([Pro-MB] =30 puM) was incu-
bated with different RONS (80 puM for SNAP-M and 60 puM for SCAN) or
metalions (100 pM) at 37 °C for 10 min followed by sonoafterglowimag-
ing using IVIS under bioluminescence mode with open filter (acquisi-
tion time 15s). The stock solutions of different RONS were prepared
according to literature®. Briefly, O, was provided by KO, in DMSO;
hydroxyl radical (*OH) was obtained by Fenton reaction between H,0,
and FeSO,+7H,0;'0, was produced by adding NaOCl to H,0,; commer-
cially available sodium peroxynitrite (source of ONOO~), NaOCl (source
of ClO") and H,0, solutions were used without further purification.
The LOD was calculated by the fitting curve of sonoafterglow intensity
as afunction of ONOO™ concentration, which was based on 3g/slope,
where gis the standard deviation (s.d.) of the blank samples. To study
the dual-locked activation of Pro-R837, SCAN ([Pro-MB] = 30 M) was
incubated with or without ONOO- (60 uM), followed by ultrasound
application. The resultant solutions were analyzed using HPLC. Free
R837 and MB were used for reference. The kinetics of Pro-R837 activa-
tionwas determined using HPLC and plotted as a function of ultrasound
application time.

Specific detection of M1 macrophages by SNAP-M and SCAN

MO, M1 and M2 macrophages, 4T1 cancer cells and NIH 3T3 cells
were, respectively, seeded in glass-bottom dish (1 x 10° per well)
and incubated with SNAP-M ([Pro-DPAs] =20 pg ml™) or SCAN
([AMPA] = 50 ng ml™) for 12 h. To scavenge ONOO", M1 macrophages
were pre-treated with N-acetylcysteine (100 mM) for 2 h. Cells were
washed thrice with PBS and stained with NucBlue (R37605, Invitrogen)

Nature Biomedical Engineering | Volume 7 | March 2023 | 298-312

309


http://www.nature.com/natbiomedeng
https://www.ncbi.nlm.nih.gov/nuccore/L23105
https://www.ncbi.nlm.nih.gov/nuccore/R37605

Article

https://doi.org/10.1038/s41551-022-00978-z

for 15 min, followed by fluorescence imaging using LSM800 confocal
laser scanning microscope (Carl Zeiss). Sonoafterglow wasinduced by
ultrasound application (2.0 W cm™) for 30 sand detected immediately
by LX71 inverted microscope (Olympus) equipped with CCD camera
with the excitation light blocked. Quantification of signal intensity was
conducted using ImageJ vl.51a software.

Invitro theranostics by SCAN

M2 macrophages were seeded on six-well plate (5 x 10° cells per
well). After incubation for 12 h, they were treated with PBS (nega-
tive control), non-activated SCAN (ultrasound-irradiated only,
[Pro-R837] =10 pg ml™), fully activated SCAN (ultrasound-irradiated
and ONOO -treated) or R837 (5.1 pg ml™, positive control) for 2 days.
For washout, cells were incubated with fresh culture medium for
another day. Next, all cells were incubated with intact SCAN
([Pro-MB] =30 uM) for 2 h. Cells were washed thrice with PBS, and
then ultrasound pre-irradiated (2.0 W cm™) for 30 s. Sonoafterglow
images were captured immediately by LX71 inverted microscope
(Olympus) equipped with CCD camera with the excitation light
blocked. Quantification of signal intensity was conducted using
Image] v1.51a software.

Biodistribution of SNAP-Mand SCAN

4T1tumour-bearing mice (n =3 per group) were intravenously injected
with SNAP-M ([Pro-DPAs] = 250 pg ml™, 200 pl), followed by in vivo NIR
fluorescence imaging at pre-determined timepoint (0, 12, 24, 36 and
48 h) usingIVIS (acquisition time 0.1 s, excitation wavelength 710 nm,
detection wavelength 780 nm). Mice were killed at 48 h after injection,
and tumours and organs (heart, liver, spleen, lung and kidneys) were
collected for ex vivo NIR fluorescence imaging using IVIS (acquisi-
tion time 0.1 s, excitation wavelength 710 nm, detection wavelength
780 nm). 4T1 tumour-bearing mice (n =3 per group) were intrave-
nously injected with SCAN ([AMPA] =250 pg ml™, 200 pl), followed
by in vivo NIR fluorescence imaging at pre-determined timepoint (O,
2,4, 6,12,24 and 36 h) using IVIS (acquisition time 0.1 s, excitation
wavelength 660 nm, detection wavelength 700 nm). Mice werekilled at
12 hafterinjection, and tumours and organs were collected for ex vivo
NIR fluorescence imaging using IVIS (acquisition time 0.1 s, excitation
wavelength 660 nm, detection wavelength 700 nm). To fully activate
Pro-MB for fluorescence imaging, tumours and organs were homog-
enized and incubated with ONOO™ (0.1 mM) for 2 h. The percentage
injected dose (ID%) of SCAN was calculated by dividing the content of
Pro-MB in organs by the total injected Pro-MB of SCAN. To study the
SCAN uptake by macrophages and cancer cells, 4T1tumour homoge-
nates from mice intravenously injected with SCAN were processed to
bessingle-cell suspension, which were stained with antibodies against
F4/80 (BMS, 1:20) and CD45 (30-F11, BioLegend) for flow-cytometry
analysis. The percentage of MB* macrophages (CD45'F4/80") and
cancer cells (CD457) was calculated.

Invivo sonoafterglow imaging by SNAP-M

4T1 tumour-bearing mice (n =3 per group) were intraperitoneally
injected with R848 (0.4 mg ml™, 50 pl) or saline every other day
three times. At day 6, SNAP-M ([Pro-DPAs] = 50 pg ml™, 50 pl) was
intra-tumourally injected at 2 h before imaging. Fluorescence images
were captured with 0.1 s of acquisition time (excitation wavelength
710 nm, detection wavelength 780 nm). For sono-and photoafterglow
imaging, tumours were pre-irradiated with ultrasound (2.0 W cm™)
or laser (808 nm, 0.33 W cm™) for 30 s, and afterglow signals were
detected usingIVIS (acquisition time 10 s). To study the tissue penetra-
tion of sonoafterglow imaging by SNAP-M, tumours were covered with
chicken breast of different thickness (0, 0.5,1, 2 and 3 cm). Fluores-
cence images were captured through tissues with 0.1s of acquisition
time (excitation wavelength 710 nm, detection wavelength 780 nm).
Sonoafterglow or photoafterglow were induced through tissues by

ultrasound (2.0 W cm™) for 30 s or laser (808 nm, 0.33 W cm™) for
90 sand detected through tissues using IVIS (acquisition time 10 s).

Invivo sonoafterglow theranostic property of SCAN
4T1tumour-bearing mice (n =3 per group) were intraperitoneally
injected with R837 (0.4 mg ml™, 50 pl) or saline every other day three
times. Atday 6, SCAN ([AMPA] = 50 pg ml™, 50 pl) wasintra-tumourally
injected at 2 h before imaging. Fluorescence images were captured
with 0.1s of acquisition time (excitation wavelength 660 nm, detec-
tion wavelength 700 nm). For sono- and photoafterglow imaging,
tumours were pre-irradiated with ultrasound (2.0 W cm™) or laser
(680 nm, 2.0 W cm™, maximum permissive exposure) for 30 s, and
afterglow signals were detected using IVIS (acquisition time 10 s). To
study the afterglow imaging after intravenous injection of SCAN, 4T1
tumour-bearing mice were randomly divided into four groups (n = 6 per
group): (1) PBS, (2) SCAN-C (without Pro-R837, [AMPA] =250 pg ml™,
200 pl) plus long-term ultrasound application (2.0 W cm™2, 5 min)
(SCAN-C + ultrasound therapy), (3) SCAN ([AMPA] =250 pg ml~,
200 pl), (4) SCAN plus long-term ultrasound application (SCAN + ultra-
sound therapy). Long-termultrasound application was conducted on
tumours to perform sono-immunotherapy. Onday 0, SCAN-C or SCAN
was intravenously administered. After 12 h, sonoafterglow imaging
was conducted, and long-term ultrasound application was executed
on tumours. On day 2, a fresh dose of SCAN-C or SCAN was injected,
and the procedures above were repeated. Such atherapeuticregimen
was discontinued until the fourth cycle. To study the immunological
memory, SCAN + ultrasound therapy-treated and untreated mice (n =6
per group) were challenged by subcutaneousinoculation of4T1cancer
cells (2 x 10° cells in 100 pul DMEM). Tumour size was recorded every
2 days. Mice were killed within 3 weeks after inoculation.

Flow-cytometry analysis

Tumours were dissected and digested with collagen 1 (2 mg ml™), col-
lagenIV (2 mg ml™) and DNasel (0.2 mg ml™) prepared in DMEM culture
mediumin 37 °C water bath. Digested tissues were thenincubated with
red blood cell lysis buffer (420301, BioLegend) for 5 min, followed by
passing through a100 pm mesh strainer (352360, Falcon). The obtained
single-cell suspensions were incubated with dye-conjugated antibod-
ies according to the manufacturer’s instructions. Live/dead staining
kit (L23105, Thermo Fisher Scientific) was used to identify the living
cells. Allantibodies were purchased from BioLegend unless otherwise
indicated. Antibody against CD16/32 (93, 1:50) was used to block the
non-specific binding. Antibodies against CD11b (M1/70,1:200), F4/80
(BMS, 1:20) and iNOS (W16030C, 1:160) were used for M1 macrophage
staining. Antibodies against CD45 (30-F11, 1:200), CD3 (17A2, 1:100)
and CD8 (53-6.7,1:100) were used for CTL staining. Antibodies against
CD4 (RM4-5,1:100) and FOXP3 (MF-14, 1:200) were used for T, cell
staining. Antibodies against CD62L (MEL-14, 1:100) and CD44 (IM7,
1:20) were used for memory T-cell staining. Antibodies against CD11c
(N418,1:100), CD80 (16-10A1, 1:50) and CD86 (A17199A, 1:50) were
used for mature DC staining. Cells were then analyzed with an LSR
Fortessa flow cytometer (BD Biosciences). Data were analyzed using
FlowJo v10 software.

Histological analysis

Metastatic nodules onlungs were counted. Tumours and mainorgans
(including heart, liver, spleen, lung, kidney and skin) were collected,
treated with 4% paraformaldehyde for 24 h and 30% sucrose for
another 48 h, followed by cryo-sectioning using CryoStat CM1950
(Leica). Tumour slices were stained with antibodies against HMGB-1
(3E3, Alexa Fluor 488-labelled, 1:200, BioLegend), Caspase-3 (#9664,
rabbit anti-mouse, 1:400, Cell Signalling Technology) and rabbit
anti-mouse calreticulin (PA3-900, 1:200, Thermo Fisher Scientific).
Alexa Fluor 488-conjugated secondary antibody (goat anti-rabbit,
1:500, Thermo Fisher Scientific) was used in caspase-3 and calreticulin
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staining. Immunofluorescence was observed using LSM800 confocal
microscope (Carl Zeiss). Moreover, tumour and organs sections were
subjected to haematoxylin and eosin (H&E) staining and observed
using LX71inverted microscope (Olympus).

Cytokines and biochemical indexes determination

To detect intra-tumouralimmune cytokines, tumours were extracted
frommice on day 8 and homogenized. The supernatant was collected
through centrifugation (500g, 5 min). Intra-tumoural cytokines, includ-
ing IFN-y, IL-12, IL-10 and TGF-B, in the supernatant were determined
using ELISA kits (BioLegend) according to the manufacturer’sinstruc-
tions. Onday 8, serawere collected from mice and blood urea nitrogen,
creatinine, aspartate aminotransferase and alanine aminotransferase
were determined according to the instructions of the manufacturer
(Sigma-Aldrich).

Statistical analysis

All numeric data are presented as mean + s.d. unless otherwise indi-
cated. Thesignificance between two groups was analyzed by two-tailed
Student’s t-test. The significance between multiple groups was ana-
lyzed by one-way analysis of variance (ANOVA) with Tukey’s post hoc
test. Statistical analysis was performed using GraphPad Prism 7.0.
Pvaluesless than 0.05were considered significant.*P < 0.05,**P< 0.01,
***p<0.001.

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The maindatasupporting the results in this study are available within
the paper and its Supplementary Information. The raw and analyzed
datasets generated during the study are toolarge to be publicly shared,
yet they are available for research purposes from the corresponding
author onreasonable request. Source dataare provided with this paper.
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Methodology

Sample preparation Tumours were dissected and digested with collagen | (2 mg mL-1), collagen IV (2 mg mL-1) and DNase | (0.2 mg mL-1)
prepared in DMEM culture medium in 37°C water bath. Digested tissues were then incubated with red-blood-cell lysis buffer
(420301, Biolegend) for 5 min, followed by passing through a 100-um mesh strainer (352360, Falcon). Spleens were dissected
and incubated with red-blood-cell lysis buffer to remove red blood cells. Single-cell suspensions were obtained and stained
with antibodies according to the manufacturer's protocols, and then analysed by flow cytometry.
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